58 research outputs found

    Extraction of main levels of a building from a large point cloud

    Get PDF
    Horizontal levels are references entities, the base of man-made environments. Their creation is the first step for various applications including the BIM (Building Information Modelling). BIM is an emerging methodology, widely used for new constructions, and increasingly applied to existing buildings (scan-to-BIM). The as-built BIM process is still mainly manual or semi-automatic and therefore is highly time-consuming. The automation of the as-built BIM is a challenging topic among the research community. This study is part of an ongoing research into the scan-to-BIM process regarding the extraction of the principal structure of a building. More specifically, here we present a strategy to automatically detect the building levels from a large point cloud obtained with a terrestrial laser scanner survey. The identification of the horizontal planes is the first indispensable step to produce an as-built BIM model. Our algorithm, developed in C++, is based on plane extraction by means of the RANSAC algorithm followed by the minimization of the quadrate sum of points-plane distance. Moreover, this paper will take an in-depth look at the influence of data resolution in the accuracy of plane extraction and at the necessary accuracy for the construction of a BIM model. A laser scanner survey of a three floors building composed by 36 scan stations has produced a point cloud of about 550 million points. The estimated plane parameters at different data resolution are analysed in terms of distance from the full points cloud resolution

    Single-tree detection in high-density LiDAR data from UAV-based survey

    Get PDF
    UAV-based LiDAR survey provides very-high-density point clouds, which involve very rich information about forest detailed structure, allowing for detection of individual trees, as well as demanding high computational load. Single-tree detection is of great interest for forest management and ecology purposes, and the task is relatively well solved for forests made of single or largely dominant species, and trees having a very evident pointed shape in the upper part of the canopy (in particular conifers). Most authors proposed methods based totally or partially on search of local maxima in the canopy, which has poor performance for species that have flat or irregular upper canopy, and for mixed forests, especially where taller trees hide smaller ones. Such considerations apply in particular to Mediterranean hardwood forests. In such context, it is imperative to use the whole volume of the point cloud, however keeping computational load tractable. The authors propose the use of a methodology based on modelling the 3D-shape of the tree, which improves performance w.r.t to maxima-based models. A case study, performed on a hazel grove, is provided to document performance improvement on a relatively simple, but significant, case

    An integrated approach for monitoring soil settlements at the VIrgo site

    Get PDF
    The Virgo detector, currently in its 2nd generation configuration Advanced Virgo (AdV), is a Michelson interferometer aimed at the gravitational waves research and at opening a new window on the study of the Universe. It is made of two orthogonal arms being each 3 kilometers long and is located at the site of the European Gravitational Observatory (EGO), in the countryside near Pisa, Italy. After the construction of the Virgo facilities completed in 2002, over the years a steady subsidence process has been observed as a consequence of the building and embankment overloads. In consideration of the subsoil characteristics, whose surface portion is mainly formed by a 25÷60 m thickness layer of clay with limited thin layers of sands, the evolution of settlements was expected and properly considered for the design of the civil engineering infrastructures, so that the vacuum tubes can be readjusted to keep the original alignment. However, along 15 years of time life, the initial estimates of the expected displacements were continuously compared with the observed effects. The measured settlements have been regularly monitored and adopted for implementing the necessary realignment activities. This paper reports the monitoring activities conducted over the years, mainly consisting of regular high accuracy levelling surveys, periodically integrated by GPS and classical theodolite measurements. These sets of measurement were adopted to perform the Virgo realignment procedure needed to keep the interferometer rigidly tied in a 3x3km plane. In order to improve the knowledge on the trend of the settlements affecting the Virgo infrastructures, an analysis based on differential interferometry using satellite Synthetic Aperture Radar (SAR) data has been performed and compared with the outcome from in-situ data

    Geodetic measurements to control a large research infrastructure: the Virgo detector at the European Gravitational Observatory

    Get PDF
    The Advanced Virgo (AdV) detector is a 3 km long arms Michelson interferometer for gravitational waves detection. The management of a complex and large research infrastructure requires high-precision geodetic surveying for positioning and rearrangement of instruments. This paper describes the establishment of Virgo Reference System (VRS) consisting in a wide-scale high precision geodetic network based on GPS and Total Station measurements, that support the positioning and the alignment of the different elements forming the interferometer. Ground settlement monitoring is strictly required to verify and adapt the interferometer vertical alignment in presence of a steady subsidence process due to infrastructures overloads. The paper describes also the monitoring activity conducted over the years by means of periodic high precision levelling, that was compared with the results with those obtained using differential interferometry based on satellite Synthetic Aperture Radar (SAR) data

    Estrazione di particolari di interesse cartografico da immagini aeree

    No full text

    EH Thompson Award

    No full text
    Panoramic images have increasingly interesting applications and they are extensively used for cultural heritage documentation and virtual 3D environments. Moreover, it has been proven that they can contain good metric content. This paper describes a state-of-the-art photogrammetric tool based on spherical panoramas. The fundamental photogrammetric equations are reviewed and two real applications are examined in order to illustrate its performance in terms of accuracy and efficiency. As a first step towards the automation of the orientation and restitution process, the epipolar geometry of spherical panoramic images has also been investigated. With a view to its integration in photogrammetric tools, the shape of the epipolar line is studied both in 3D space and as a 2D mapping; the results obtained with simulation data are analysed
    • …
    corecore